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Abstract. The Hamiltonian equation of motion is studied for a vortex occurring in a two-
dimensional Heisenberg ferromagnet of anisotropic type by starting with the effective action for
the spin field formulated by the Bloch (or spin) coherent state. The resultant equation shows the
existence of a geometric force that is analogous to the so-called Magnus force in superfluids.
This specific force plays a significant role in the quantum dynamics of a single vortex, for
example the determination of the bound state of the vortex trapped by a pinning force arising
from the interaction of the vortex with an impurity.

1. Introduction

Quantum vortices in superfluids is one of most attractive subjects in condensed matter
physics. Among many aspects in vortex phenomena, the dynamics of many vortices has
been developed by starting with the relevant assumption on the boson superfluid [1], which
reproduced the well known form for the Hamiltonian equation for the assembly of vortices
[2]. The quantization based on the Hamiltonian equation has also been studied [3]. Recently,
a refined formulation has been given for the quantum treatment for a superfluid vortex in
the framework of the generalized Hamiltonian dynamics starting with the Landau–Ginzburg
action [4]. Besides the superfluid vortex, other types of quantum vortex have been of interest
for some time; typical is the vortex in the Heisenberg ferromagnet (see, for example, [5]).
The occurrence of a vortex in a ferromagnet is quite natural, if one notes a close resemblance
between the superfluid He4 and the ferromagnet as a quantum condensate, especially in the
vicinity of the ground state. Following the procedure developed for the superfluid, the
Hamiltonian dynamics has been studied for vortices occurring in two-dimensional spin
condensates [6].

Apart from the quantum dynamics of an assembly of vortices, there has been a long
interest in the peculiar behaviour of the motion of a single vortex mainly inspired by the
type II superconductors [7–9]. Among others, an interest is focused on the existence of a
specific force called the Magnus force. This specific force is known to occur when a vortex
moves in the uniform stream and plays a role in explaining some characteristic features
of type II superconductors [7–9]. The Magnus force is also known to play a crucial role
in some peculiar properties of the superfluid: the smallness of the critical velocity, the
attenuation ratio of the second sound wave in the rotating superfluid He4 and so on [10].

The purpose of this paper is to put forward the equation of motion for a spin vortex for
the ferromagnetic system within the Hamiltonian formulation for a quantum vortex which
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has been previously developed [6]. As a consequence, we naturally arrive at a force of
Magnus type. Indeed, if one considers the resemblance between the superfluid He and
the ferromagnet as quantum condensates, it is natural to expect a realization of such an
analogous force. This force should be called the ‘geometric force’, which differs from the
ordinary force derived from a potential function. We also show another type of force called
the pinning force, which comes from the interaction between a vortex and an impurity
immersed in a condensate. It is shown that the effect of the pinning force is realized by the
bound state of the vortex trapped in the pinning potential.

2. Spin field Lagrangian

Our starting point is the spin coherent state (or Bloch state) [11]. The quantum state for
the spin system can be described by an infinite product of the Bloch state defined on each
space point

|{z(x)}〉 =
∏
n

|zn〉 (2.1)

wheren means the vector assigning the lattice point, which is taken over continuous space
points. Each component is given by the SU(2) coherent state

|z〉 = 1

(1 + |z|2)J exp[zĴ+]|0〉 (2.2)

where |0〉 = |J, −J 〉 is the lowest state satisfyinĝJ−|0〉 = 0 and Ĵ± are ladder operators
andz takes any complex value. Using (2.1), we have the action function in the continuous
limit

S =
∫

〈{z(x)}|ih̄ ∂

∂t
− Ĥ |{z(x)}〉 dt =

∫
L d2x dt (2.3)

where the Lagrangian density is given as

L = iJh̄

2

z∗ż − ż∗z
1 + |z|2 − H({z(x)}, {z(x)}∗). (2.4)

Here note that the first term is a variant of the so-called ‘geometric phase’, which is
represented in terms of the overcomplete set [12, 13]:

0 =
∮

〈Z|ih̄ ∂

∂t
|Z〉 dt. (2.5)

If we are concerned with the quantization, it may be realized by constructing the propagator
[11]

K = 〈z(x)| exp

[
− iH

h̄
T

]
|z(x)〉 =

∫
exp

[
i

h̄

∫
L dx dt

] ∏
x,t

dµ[z(x, t)]. (2.6)

The path integral may be used to derive the effective propagator for the vortex motion which
leads to the semiclassical quantization of the vortex motion. By using the stereographic
projection

z = tan
θ

2
e−iφ (2.7)

with (0 6 θ 6 π, 0 6 φ 6 2π), the action is written as a familiar form

S =
∫

[ 1
2Jh̄(1 − cosθ)φ̇ − H(θ, φ)] d2x dt. (2.8)
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Note that the first term is regarded as a field theoretic extension of the so-called ‘canonical
term’, which has been well known in Hamiltonian dynamics for a spin∫

Jh̄

2
(1 − cosθ)φ̇ dt ≡ SC.

This term is also considered to be a generic Lagrangian in various quantum problems; for
example the Lagrangian for the charged particle constrained on a sphere in the uniform
magnetic field arising from the Dirac pole. The variation principleδS = 0 yields the field
equation for the angle variables,

Jh̄ sinθ
∂θ

∂t
= −δH

δφ
Jh̄ sinθ

∂φ

∂t
= δH

δθ
. (2.9)

3. Effective Lagrangian for a spin vortex

We shall derive the effective Lagrangian leading to the equation of motion for a single
vortex. In order to achieve this, we need to construct the single vortex inherent in the static
solution of the field equation for spin. In general this is given by an anisotropic Heisenberg
model and the concrete form of this will be given in appendix A. We adopt the following
feature: (i) the variableφ is given by an azimuthal angle

φ = tan−1 y

x
(3.1)

and (ii) the profile functionθ is assumed to be given by a function of the radial variable
r only, which is derived from the condition such thatH takes an extremum.θ(r) may
be solved by imposing the boundary condition forθ(r) such that thez-component spin
J3(x) = J cosθ is directed upward inside the core (of radiusa) and vanishes outside the
core, namely,θ(r) → 0 for r → 0 andθ(r) → π/2 for r → ∞. This may be considered
to be an idealization of the feature that the spin configuration is planar at infinity.θ(r),
which incorporates this feature, may be simulated by the following form:

θ(r) =
{

cr (0 6 r 6 a ≡ π/2c)

π/2 (a 6 r).
(3.2)

Here the parameterc, which stands for the size of the vortex, should be determined so as
to minimize the energy ((A5) in appendix A).

Having given the above preparation, we shall now turn to the dynamics for a single
vortex. The dynamics can be built on the angle variables(θ, φ) such that the argument
(x, y) is shifted by an amount of the coordinate for the vortex centre(X(t), Y (t)):

φ(x, t) = µ tan−1 y − Y (t)

x − X(t)
θ(x, t) = θ(x − X(t)) (3.3)

where the coefficientµ stands for the vortex strength.

3.1. Canonical term

We first treat the canonical term which is written as

LC =
∫

1
2Jh̄(1 − cosθ)φ̇ d2x. (3.4)

By making use of the chain rule,

∂φ

∂t
= ∂φ

∂X

dX

dt
(3.5)
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together with the fact that the gradient of the phase function gives the velocity field, namely,
if we note the phase is given as a function ofx − X, we get

∂φ

∂X
= ∇φ = v (3.6)

wherev denotes the velocity field coming from the vortex we are concerned with. Hence
we get for the canonical term

LC =
∫

1
2Jh̄(1 − cosθ)∇φ · Ẋ dx (3.7)

which can also be written as the differential one form

ω =
∫

ηv · dX d2x (3.8)

where the following quantity is defined:

η = 1
2Jh̄(1 − cosθ). (3.9)

By using this notation, the boundary condition forθ assigned in the above can take over to
the functionη in the canonical term:η → 0 (for r → 0) andη → Jh̄/2 (for r → ∞). This
feature is similar to the vortex for a bose fluid [4]. Furthermore, we note that the velocity
field is given as

v = µk × ∇ log |x − X| (3.10)

wherek means the unit vector perpendicular to the(x, y) plane.
We shall now evaluate the effective Lagrangian for the motion of a vortex centre. By

substituting (3.10) into (3.7), we get

LC =
∫

d2x η(x − X)(v(x − X) · Ẋ)

= I1Ẋ + I2Ẏ (3.11)

whereIα(α = 1, 2) are given by

Iα =
∫

ηvα d2x. (3.12)

The integrand ofIα does not decrease fast enough at large distance and the result depends
on how one takes the limit,r → ∞, on the integration boundary. This may be handled by
a sort of ‘regularization’ and some care should be taken to get the correct results. Having
carried out the regularization to evaluate the integral (see appendix B), the final result for
the canonical term becomes

LC = 1
2η0µ(Y Ẋ − XẎ ). (3.13)

If we note the boundary condition forθ = π/2 at r → ∞, the value ofη0 is given by

η0 = 1
2Jh̄. (3.14)

Equation (3.13) is the central formula of the present theory.
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3.2. Hamiltonian term

Next we consider the contribution that arises from the Hamiltonian. This is simply written
in the form (see appendix A)

H =
∫

H d2x.

It can be easily verified thatH does not depend on the vortex centre(X, Y ). This feature
comes from the following simple observation: the integrand is a function ofx − X and
if we use the shift of the integration variable,x → x − X, the integral remains invariant,
because even after making this change the integral should be carried over the whole two-
dimensional plane. So the Hamiltonian simply gives a trivial contribution, which becomes
nothing but the self-energy for the single vortex. It should be noted that this feature is
peculiar to the case of the single vortex, namely, if we consider the general case for which
there are several vortices, we should have the interaction term coming from the mutual
configuration of the vortices.

3.3. Pinning potential by impurity

Finally we consider the role of the impurity effect for a vortex within the effective theoretical
approach. It may be plausible that the interaction comes from the magnetic origin. The
simplest choice satisfying this criterion may be given as follows

Lpin = G

∫
d2x J3(x)s3(x) (3.15)

whereG is a coupling constant. Heres3(x) represents the spin that is carried by a magnetic
impurity. Let us consider the case that one magnetic impurity is located atY , and has the
well localized density distribution. Then we can take the delta function approximation for
such a spin disctribution

s3(x) = s3δ
2(x − Y ) (3.16)

wheres3 = ± 1
2. With the aid of the parametrization of the vortex form (3.2), the integral

in (3.15) is calculated easily to result in the effective interaction between the vortex and
impurity:

Limpurity(≡)Upin =
{

Gs3 cos[(π/2a)|X − Y |] (|X − Y | < a)

0 (|X − Y | > a).
(3.17)

Here, if the coupling constantG is positive, the sign of spins3 is chosen such that the
potential of the first half of (3.17) becomes attractive.

4. Geometric force and semiclassical bound state

4.1. Derivation of geometric force

Now combining (3.13) and (3.17), the effective Lagrangian for one vortex becomes

Leff = η0µ

2
(Y Ẋ − XẎ ) − Heff. (4.1)

Here the second term is the Hamiltonian for the single vortex, which is nothing but the
pinning potential;Heff = Upin. The equation of motion for the vortex centre can be obtained
with the aid of the Euler–Lagrange equation

δ

∫
Leff dt = 0
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which leads to

Ẋ = ∂Heff

∂Y
Ẏ = −∂Heff

∂X
. (4.2)

The equation of motion (4.2) can be regarded as a special case of the canonical equation of
motion [4, 6], where the pair(X, Y ) should be regarded as a canonical variable. Now it is
amazing to note that this canonical equation of motion is written as

µη0

2
Ẋ = k × ∂Upin

∂X
(4.3)

and, furthermore, this can be written by multiplying the vectork, thus

µη0

2
(k × Ẋ) = −∂Upin

∂X
(4.4)

where use is made of an elementary formula for the vector product

a × (b × c) = b(a · c) − c(a · b)

together with the orthogonality relation:

(k · ∇Ueff) = 0.

From the physical point of view, the left-hand side of (4.4) is nothing but the ‘geometric
force’, which is perpendicular to both the vortex velocity and the vectork. This is analogous
to the Magnus force in the case of the usual superfluid or the Lorentz force for the charged
particle in a uniform magnetic field. On the other hand, the second term represents the
pinning force that comes from the pinning potential, which is the usual force derived from
the potential function. In this way, (4.4) can be regarded as a balance of the two kinds of
forces.

4.2. Bound state by pinning potential

The motion of vortex can be quantized if we note that the vortex coordinate(X, Y ) is a
canonical variable. The quantization can be formally carried out by constructing the path
integral

Keff =
∫

exp

[
i

h̄

∫
{ 1

2η0µ(Y Ẋ − XẎ ) − Upin} dt

] ∏
dµ[X(t), Y (t)]. (4.5)

In order to get a crude estimate, the semiclassical limit is convenient. It is known that in the
semiclassical limit the path integral leads to the Bohr–Sommerfeld (BS) quantization which
is utilized to derive the bound-state spectra formed by the vortex trapped by the pinning
potential. The BS rule is simply given by

µη0

2

∮
C

(X dY − Y dX) = 2πnh̄. (4.6)

HereC means a loop which is defined asUpin = E. For simplicity, the centre of impurity
is assumed to be placed at the originY = 0, andGs3 < 0, so the energy contour is given
by

Gs3 cos
π

2a
|X| = E. (4.7)

From this form, the loopC becomes a circle;|X| = √
X2 + Y 2 ≡ ρ, hence the quantization

rule turns out to be
µη0

2
πρ2 = 2πnh̄ (4.8)
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with n an integer. Thus we get the energy spectrum

En = Gs3 cos

[
π

a

√
nh̄

µη0

]
. (4.9)

The critical bound state is limited byEn = 0, which means the inequality;

π

a

√
nh̄

µη0
6 π

2
.

This leads to the condition for the quantum numbern:

nh̄ 6 1
4µη0a

2. (4.10)

5. Summary

We have studied a possible occurrence of the geometric force in a magnetic condensate. This
force is analogous to the Magnus force in ordinary superfluids. The characteristic property
is the nature of the ‘transversality’, namely, the force is perpendicular to the velocity of the
‘particle (vortex)’, which suggests that the force does not attribute to the energy dissipation.
This feature is a characteristic of the Lorentz force, so the geometric force is a kind of
Lorentz force. However, it should be noted that the analogy with the Magnus force is
not complete, since in the magnetic condensate we have no supercurrent as in the case of
superfluids.

As is seen from the above derivation, the geometric force is attributed to the canonical
term or a variant of the geometric phase. From the point of view of formulation, the
geometric force may be obtained as a special case of the dynamics of many vortices that
has been previously given [6]. However, the effective Lagrangian for the single vortex can
naturally incorporate the effect of the pinning force if we include the interaction with the
magnetic impurities immersed in the magnetic substance. Indeed, we have shown that by
using the Bohr–Sommerfeld quantization the geometric force results in the bound state of a
vortex captured by a pinning potential. Apart from such a potential problem, the geometric
force would play a role in the study of the effect of dynamical perturbation acting for the
vortex motion. Details of this will be given elsewhere.

Note added in proof. Having submitted this paper, the authors were informed of the paper by Volovik (Volovik
G 1986JETP Lett.44 185) which suggests the existence of the Magnus force for a magnetic vertex. One of the
authors (HK) would like to thank Professor Volvik at Helsinki University for his kind correspondence.

Appendix A

In this appendix we give a concrete form of the Hamiltonian which is not explicitly given in
the text. We adopt the continuous version of the nearest-neighbour interaction of anisotropic
type; the Hamitonian density is given by

Ĥ = 1
2g{(∇Ĵ1)

2 + (∇Ĵ2)
2 + λ(∇Ĵ3)

2} (A.1)

where the parameterλ means the degree of anisotropy, which is assumed to be 0< λ 6 1,
and this makes the system favour the planar spin configuration. The expectation value
becomes

H = 1
2g{(∇J1)

2 + (∇J2)
2 + λ(∇J3)

2}. (A.2)
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By using the angle variable representation of the spin field,

J1 = J sinθ cosφ J2 = J sinθ sinφ J3 = J cosθ

H can be written as

H = 1
2gJ 2{(cos2 θ + λ sin2 θ)(∇θ)2 + sin2 θ(∇φ)2} (A.3)

where the second term may be regarded as a ‘fluid kinetic energy’: for the spin fluid

T ≡ 1
2gJ 2

∫
sin2 θ(∇φ)2 d2x. (A.4)

Futhermore, if we consider that the lateral angleθ can be chosen as a function of the radial
variabler only, we have the form for the Hamiltonian

H =
∫ [

r(cos2 θ + λ sin2 θ)

(
dθ

dr

)2

+ 1

r
sin2 θ

]
dr. (A.5)

This Hamiltonian leads to the field equation forθ(r) via the variation principle, which
would form the basis of the dynamics of the single vortex.

Appendix B

In the following we evaluate the integral which appears in the canonical term,

Iα =
∫

ηvα d2x. (B.1)

We define two discs as

DA = {x; |x| 6 RA} Da = {x; |x − X| 6 a} (B.2)

wherea is the size of the vortex defined in (3.2) andRA should be taken large enough for
DA to includeDa. Let us defineV (a, A) as the region

V (a, A) = DA − Da. (B.3)

The integralIα is indefinite atr → ∞, so we must adopt a proper ‘regularization’ to get
the finite result; the integral region is restricted to the finite regionV (a, A) (cut-off), and
the infinite limit should be taken

Iα = Iα(a) + lim
R→∞

Iα(R) (B.4)

where each integral is written as

Iα(a) =
∫

Da

d2x ηvα Iα(R) =
∫

V (a;R)

d2x ηvα. (B.5)

By using the polar coordinates aroundx = X, the integralIα(a) can be evaluated

Iα(a) =
∫

Da

r dr dθ
η0

a
r

µ

2π

εαβxβ

r2

= η0µ

2πa
εαβ

∫ a

0
r dr

∫ 2π

0
x̂β dθ = η0µ

2πa
εαβ

a2

2
· 0 = 0 (B.6)
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wherex̂α = xα/r. With the aid of the Stokes theorem, the integralIα(R) can be written as
a line integral:

Iα(R) = −εαβη0

∫
V (a;R)

d2x ∂βGV (x; X)

= −εαβη0

∫
∂DA+∂Da

dsβ GV (x; X). (B.7)

Here we define the functionGV = log |x−X|. Furthermore, by using the polar coordinate
aroundx = X, the integral on∂Da becomes∫

∂Da

dsβ GV (x; X) = − µ

2π
loga

∫
dsβ = 0 (B.8)

whereas for aroundx = 0, the integral on∂DA is evaluated to be∫
∂DA

dsβ GV (x; X) = − µ

2π

∫
dsβ

[
logR + (xX)

R2
+ O(R−2)

]
= −µ

π

1

R2

∫
dsβ(xX) + O(R−2)

= µ

2π
Xα

∫
dθ x̂αx̂β + O(R−2) = 1

2µXβ + O(R−2). (B.9)

Combining (B.8) and (B.9), we get the final result forIV
α :

Iα = 1
2η0µεαβXβ. (B.10)
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